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The trisubstituted pyrrole porphobilinogen (PBG; 1 in
Scheme 1) is a key intermediate in the biosynthesis of
porphyrins and corrins and the central building block for
the biosynthesis of hemoglobin, chlorophyll, and many
other brightly-colored pigments of life.t First isolated?
and assigned its structure 40 years ago,®* PBG has
remained a popular synthetic target. Successful total
syntheses have been reported from substituted pyrroles,®
from pyrrole itself,® and from azaindole.” Yet despite its
deceptively simple-looking achiral structure, PBG re-
mains difficult to synthesize in preparatively useful
amounts and expensive to buy (>$10 000 per gram).8

Interest in a practical and efficient route to PBG that
could furnish analogs and congeners has been fueled by
the emergence of photodynamic therapy (PDT) using
synthetic, porphyrin-based pigments to treat systemic
cancers, superficial malignancies, and small, localized
tumors.® PDT relies on the administration of chro-
mophores that sensitize cells to irradiation with visible
or near-visible light to generate singlet oxygen. Ap-
propriate sensitizers must show selectivity for the ma-
lignant tissue and must be cleared promptly in order to
achieve timely treatment regimens. In a major advance,
oral administration of 5-aminolevulinic acid, the biosyn-
thetic precursor of PBG, was shown to sensitize tumor
cells to light for only a few hours.!® Since 2-(amino-
methyl)pyrroles like 1 can self-assemble nonenzymati-
cally into uroporphinoids quite readily under neutral*!
or acidic® conditions, we reasoned that PBG and suitable
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analogs might be transformed into porphyrin or corrin-
like pigments, either in vivo or in vitro, for PDT.

To implement the first stage of that strategy, we report
a short, high-yielding synthesis of PBG itself and of
several related 2-(aminomethyl)pyrroles. Key features
of our approach include (1) an adaptation of the van
Leusen pyrrole construction to the acidic electrophile,
diethyl glutaconate, (2) a highly regioselective amino-
methylation of the product pyrroloacetic ester, and (3) a
new method for the direct alkylation of 3-(hydroxymeth-
yl)pyrroles that accommodates a variety of simple carbon
nucleophiles such as malonates, substituted malonates,
acetoacetates, and cyanide. Of special interest is the
capability of installing acetate, propionate, or larger side
chains at the 3-position of the pyrrole nucleus leading to
PBG analogs and homologs 2—5.

Simple enones and enoates react with the sodium salt
of tosylmethyl isocyanide (TosMIC) to afford 3- or 3,4-
disubstituted pyrroles.’? Under those conditions, how-
ever, diethyl glutaconate (6) (Scheme 2) underwent
deprotonation and self-condensed to form a dimeric
tetraester as the exclusive product. To minimize proton
transfer and retard dimerization, 6 (1 equiv) was added
to the lithium salt of TosMIC [1 equiv, THF, —70 °C,
generated using LiN(TMS),] with slow warming to rt. In
that fashion, multigram quantities of pyrrole diester 7
could be obtained in 70—80% yield. Formylation of 7
under Vilsmeier—Haack conditions gave the expected
aldehyde 8 as the predominant product (8:1 ratio, 96%
overall) that, without separation, was converted to the
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oxime 9 and hydrogenated over Pd(OH),. Upon basic
workup, the desired amino diester 10 cyclized to lactam
11, which was easily obtained pure by chromatography
in 83% overall yield from 8.

Selective reduction of 11 with DIBAL under controlled
conditions furnished (hydroxymethyl)pyrrololactam 12
(86%), a key intermediate in our synthesis. We envi-
sioned that substitution of the OH group in 12 with
appropriate carbon nucleophiles might proceed without
activation as an acetate or tosylate by a process of
elimination—addition involving a g-alkylidenepyrrolenine
cation.® In fact, when 12 was heated with the sodium
salt of dimethyl malonate (5 equiv, DMF, 130 °C, 4 h),
diester 13 was obtained in 65% yield. Nucleophilic
deesterification and decarboxylation (1.3 equiv NaCN—
DMF, 140 °C, 63%) furnished the methyl ester of PBG
lactam 14, a common intermediate in virtually all previ-
ous syntheses of 1. The present synthesis gives 14, which
can be saponified to 1, in seven steps and 20% overall
yield, representing a short and efficient route from
commercially available reactants.

The direct alkylation of s-(hydroxymethyl)pyrroles is
unprecedented, and several examples of the process
(shown in the Table 1) illustrate its scope and general-
ity.* Besides undergoing a two-carbon chain extension
with dimethyl malonate, compound 12 reacts with NaCN
to afford 15, thus achieving a one-carbon homologation
leading to nor-PBG 2. Substituted malonates such as
diethyl allylmalonate or diethyl benzamidomalonate also
react with 12 to generate 16 and 17, respectively,
indicating the success of the method in forming quater-
nary carbon centers. Similar alkylations on the parent
system, 3-(hydroxymethyl)pyrrole 18, also give the ex-
pected products.

Pyrroles 16 and 17 represent clinically promising new
directions for synthetic PBG analogs, both in PDT and
other medical applications. Hydrolysis and decarboxy-
lation of 16 afford allylated PBG 4, which may find use
in assembling haptens for the preparation of more avid
anti-PBG antibodies. Such immunoreagents are cur-
rently employed to monitor serum PBG levels,®> which
are good indicators of lead poisoning in children.1®

The synthesis of 17 illustrates an approach to new
pyrrole-containing a-amino acids like 5 of therapeutic
interest in PDT. Since sophisticated active transport
mechanisms for a-amino acids have evolved in eucaryotic
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Table 1. Nucleophilic Alkylations of
p-(Hydroxymethyl)pyrroles

Reactant Nucleophile? Product (Yield)
12 NaCH(CO,CHa), 13 (68%)
12 NaCN® 15 (35%)
12 KC(CH,CH=CH,)(CO,Et), 16 (66%)
12 NaC(NHCOPh)(CO,Et), 17 (44%)
CH,OH CO,CHs
Z/ \S NaCH(CO,CHa), )
N N
H H
18
19 (53%)°
CO,Et
Wcoza
18 NaC(CH,CH=CH,)(CO,E), N CH,CH=CH,
H
20 (70%)
o}
18 CH3COCH(Na)CO,Et I CHy
CO,CH;4
N
H
21 (66%)
18 NaCN

FS\CN

N
H
22 (52%)
a Representative conditions: 5 equiv of nucleophile, DMF, 130—

140 °C, 4 h. b 10 equiv used. ¢ Combined yield for alkylation and
deesterification—decarboxylation.

cells,’” compounds like 17 may serve as precursors for
highly tissue-selective PDT sensitizers, the attendant
advantages of which include lower toxicity and reduced
skin photosensitization.
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